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Wide-Band S-Parameter Extraction From FD-TD
Simulations for Propagating and Evanescent
Modes in Inhomogeneous Guides
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Abstract—T his paper proposes a new method of S-parameter
extraction from finite-difference time-domain simulations. Unlike
the previously published methods, the present method extractsthe
frequency-dependent mode impedance and propagation constant
directly from the three-dimensional simulations. Thismakesit ac-
curate and computationally effective in wide-band analysis. This
paper providesexamplesof calculationsincluding difficult cases of
inhomogeneous or lossy structures, with the frequency band span-
ning below and above the cutoff frequency. Special attention is
given to the S-parameter extraction for evanescent modes. It is
shown that the available literature providesinsufficient and some-
times confusing background in thisregard. Thus, a new consistent
theoretical background is presented.

Index Terms—Circuit simulation, computer-aided analysis,
electromagnetic analysis, scattering parameters.

I. INTRODUCTION

-PARAMETER extraction from finite-difference time-do-

ain (FD-TD) simulations of microwave circuits has

been considered by many authors. Originally, the interest was

concentrated on propagating modes, assumed to be perfectly

matched at ports (e.g., [1]). Due to problems with wide-band

modeling of well-matched ports, more general methods al-

lowing for a controlled mismatch have been further proposed

[2]{5]. However, extensions to evanescent modes have been
scarce and practically limited to homogeneous waveguides.

Let us note that evanescent modes at ports are also of great
practical interest in a wide range of applications. Moreover,
the most effective way of the analysis can often be obtained
by circuit segmentation [6] and by calculating different seg-
ments separately, by either applying the same method or even
applying different simulation methodsto different segments. As
an example, FD-TD mode expanded results [2], [5], [ 7] can be
used for further matrix operations or in conjunction with the
mode-matching method. For such applications, we also need a
method of wide-band .S-parameter analysis, applicable to any
practical case, including extraction of evanescent modes in a
multimode environment at ports defined at inhomogeneously
filled waveguides. It is aso important to have a possibility of
shifting the reference plane of the port in the post-processing
stage of the FD-TD analysis and, thus, we need to know the
propagation constant changes versus frequency at each of the
ports.
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In the previously reported methods [2]{5], the extraction of
S-parameters is based on the assumption that, for each consid-
ered frequency and each considered mode of propagationin the
port lines, we know the following:

* transverse-field distributions across the port line er(z, v)
and hr(x,y);

* relationsbetween er (x, v) and hr(z, y) in magnitude and
phase (the mode impedance);

* propagation constant (magnitude and phase) of the mode.

In [2]{4], it is assumed that the above relations are analyt-
ically known, which practically limits application to homoge-
neous guides. The method of [5] assumes that such informa-
tion is extracted from a solution of a two-dimensional (2-D)
eigenvalue problem. Such an approach works correctly for a
single frequency. The lack of knowledge of the changes of the
mode impedance and propagation constant versus frequency
(which is a typical case of inhomogeneous guides) results in
the eigenvalue problem solution needing to be repeated a large
number of times. This makes the method computationally in-
effective. Moreover, there are cases when the 2-D eigenvalue
problem becomes difficult. We refer, for example, to the cases
of lossy structures and/or solutions below the waveguide cutoff
frequency.

This paper proposes a method in which we need to know the
transverse-field distributions er(z, ) and hr(x, y) to separate
a particular mode, but we do not need to know a priori either
the mode impedance or the propagation constant. Both are ex-
tracted from the three-dimensional (3-D) fields for each of the
frequency points considered in S-parameter extraction. By such
an approach, we eliminate the influence of the changes versus
frequency of the mode impedance and the propagation constant.
This makes the method in principle perfectly wide-band in the
case of homogeneous guides—including theimportant practical
case of lossy structures. In the case of inhomogeneous guides,
some error appears due to the change of ey (z,y) and hy(z, )
with frequency. However, let us note that the changes in the
transverse-field distributions er(x, i) and hr(z, y) are usualy
much smaller than the changes in mode impedance or propaga-
tion constant (especially when we consider frequencies close to
the waveguide cutoff). It is important to note that the changes
of transverse-field distributions are quite small when the fre-
guency drops below the waveguide cutoff and when we intro-
duce losses. This makes it possible to accurately calculate the
lossy cases with templates calculated for lossless equivalents
and the evanescent mode cases with templates calcul ated above
the cutoff frequency.
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The application of our method to evanescent modes prompted
usto consider somefundamental propertiesof the modes of non-
real modei mpedance. Aswewill further show, suchmodesi mpose
nontrivial questionsonthevery definitionof the S-matrix, itsprop-
erties, anditsability toexplain physical phenomenainthecircuit.
These questions have not been formulated thus far by any of the
paperson.S-parameter extractionfromtime-domainsimulations.
They havebeen considered by Marksand Williamsintheir excel-
lent theoretical paper [8]. However, while the authors of [8] con-
centrateonfoundationsfor metrol ogy applications, they put aside
atheoretical case of evanescent modesinlosslesscircuits, which
would imposeintheir theory several undefined values of param-
etersresulting from multiplication of zero by infinity. When con-
sidering .S-parameter extraction from FD-TD analysis, we need
to treat evanescent modesin lossless circuits as one of the basic
cases. To havethetheory fully applicableto this case, we need to
modify some of the definitions proposed in[8].

Il. S-MATRIX DEFINITION AND MODE EXTRACTION
A. Basic Issuesin S-Matrix Definition

To investigate the behavior of the physical waves, let us con-
sider a particular waveguide mode described by frequency-de-
pendent complex amplitudes of transverse el ectric and magnetic
fields

ET(JC,y,z) :fe(z)eT(xvy) (1)
HT(‘Tvyv Z) :fh(z)hT(‘Tvy) e ¥ (2)
where
er(x,y)and hr(x,y) rea vector functions representing
cross-sectional field patterns;
fe(z) and fr,(2) complex scalar functions de-

scribing wave propagation along
the considered transmission line;
© phase shift between electric and
magnetic fieldsin atraveling wave.
In two typical situations, we have the following cases.

Casel) Inapurely traveling wave of amplitude C. ininfinite
waveguide

fe(z) :Ceeiryz (3)

fh(z) =Che™ 7" (4)

where v = « + jj3 is propagation constant of the
considered mode.
Case2) Inthe presence of reflections from the guide’ s end

fe(z) =Co(e ™% + I'e7%) (5)
fu(z) = Cp(e™™" = I'e™) (6)
where I is the reflection coefficient.

In microwave engineering applications, it is often convenient
to replace the field theory representation of wavesin atransmis-
sion line (1), (2) by their circuit theory representation (7), (8)

U =Usfe(z) (7
I =1Iyfr(z)e™¢ 8

where U, and I, arerea scalars.
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Voltage Uy is the result of some integration over er(z,y)
and current I, is the result of some integration over hr(x, ).
Only in the case of apure TEM mode the extraction of Uy from
er(z,y) and Iy from hr(x, y) isunambiguous. In other cases, it
is subject to specific (often application customized) definitions.
Our proposals in this regard will be discussed further in this
paper.

With Uy and I defined, we can also define the characteristic
impedance of the transmission line

e7# U,
Z.= I, (9)

The S-matrix describes relations between incident (denoted
by («) andreflected (b) waves. Therefore, to construct the S-ma-
trix, we must answer the following two questions.

1) How to define the incident wave and reflected wave coef-

ficients « and b as functions of U and 1?
2) How to extract Uy and Iy from er(z,y) and hr(z, y)?
We shall address these issuesin Sections |1-B and C.

B. Definition of Incident and Reflected Waves

The answer to question 1) is clear as long as the incident
and reflected waves at ports can be defined with respect to real
reference impedance. In the case of nonreal impedance (and/or
nonimaginary propagation constant), the physical incident and
reflected waves are nonorthogonal. This means that the power
transmitted to a port is not equal to the difference between the
power flows calculated separately for theincident and reflected
waves. A necessity to extend the S-matrix definition to such
cases was noticed several decades ago, and a solution best
known and used up to now was proposed by Kurokawa [10] as
follows:

Ui + ZirefIi

a4 = (10)
2\/ [Re(Ziref)[
U — ZE o1
bi — ? iref "t (11)
2\/ [Re(Ziref)[
where

U; and I; mode voltages and currents at the ith port;

Zivet reference impedance at the ith port, which is,
in principle, arbitrary, but the natural choice is
making it equal to the characteristic impedance
of the transmission line at this port Z;..

* denotes the complex conjugate.

Kurokawa' s power waves defined with respect to nonreal
Ziwot are atificialy orthogonalized, but as a result, they do
not fulfil the Maxwell equations. To illustrate this point,
let us choose Z;..s = Z;. and assume an evanescent mode
with Z,. purely imaginary. From (10) and (11), we obtain
I = b;/a; = 1 irrespective of the physical situation, i.e., in
both Case 1 (pure traveling wave) or Case 2 (partially standing
wave) considered in Section [1-A.

To construct a definition producing a physically relevant re-
flection coefficient, we need to assume

a; = F(Ziet (Us + ZivetI;)
b = F(Ziver)(Us — Zirerd;)

(12)
(13)
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where I’ is some arbitrary function of Z;..; and its shape will
be subject of the following discussion. Marks and Williams [8]
propose that

Re(Ziref)

F(Ziref) = W

(14)
and call the obtained result “pseudo-waves’ becoming “true
waves’ when Z;..; = Z;.. They give a rationale for such a
choice, which is fully convincing in metrology applications.
However, when we consider evanescent waves in lossless
guides, al the wave amplitudes due to (12)—(14) become zero.
Thus, we should rather switch to other choices of F(Z;.er). In
[9], we have used

1
2 \Y [Ziref[

which is acceptable, but in the case of reciprocal circuits [see
(37)], it assures only the condition of | S;;] = |S,;|. Thatiswhy,
in this paper, we propose

F(Ziref) = (15)

1
2 V Ziref

which, aswe further show, assuresafully symmetrical S-matrix
with S;; = S}, for reciprocal circuits.

F(Ziref) =

(16)

C. Definition of Modal Voltages and Currents

With reference to (7) and (8), our aim now is to define two
quantities representing amplitudes of the electric and magnetic
fields of a particular mode, to be extracted from a multimode
environment. It is only by analogy to TEM transmission lines
that we shall call these two quantities “voltage” and “current”
while they may be quite far away from the physical interpre-
tations. A typical approach, e.g. [4], consists in calculating a
scalar product (across the port) of the field E(z, y, t) obtained
from the 3-D FD-TD simulation and the field er;(x,y) of a
pure ith mode (mode template) obtained analytically or from
2-D FD-TD eigenfunction analysis

U, = //E(x,y, t) -eri(x,y)ds 17)

The approach described by (17), (18) is adequate for homo-
geneous waveguides. In the case of inhomogeneous waveguides
it can be proven ([11, Ch. 10]) that the modes are not orthogonal
with respect to scalar products like (17), and thus this approach
does not separate the modes correctly. Among the quoted ref-
erences only [5] and [8] use vector products applicable to inho-
mogeneous lines.

I1l. THE PROPOSED METHOD

We will now be considering the ith port of the investigated
multiport. By “ith port,” we understand an electromagnetic port
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associated with a particular mode of propagation. In the multi-

mode environment, different electromagnetic ports can be asso-

ciated with the same or different geometrical ports.

1) We propose that the mode voltages and currents be defined
in the form of integrals across the port reference plane z, as
follows:

wwzijw%%wmewwﬂw (19)
M@://@mwwﬂme%%@w (20)

where er;(z, v, wr) and hr;(x, y,wr) are E- and H-field
amplitudes of the ¢th-mode template at the frequency wr,
while

/J%M%WMMM%WWIL (21)

The modetemplates are obtained from 2-D FD-TD calcu-
lations, e.g., using the method proposed in [12]. Transverse-
field distributions er;(z, v, wr) and hr;(x, y,wr) are red
functions and, thus, do not contain the information about
possible phase difference between the fields. Thisinforma
tionisavailablein E(x, y, zp, t) and H(z,y, zp, t) and will
be further extracted in a procedure described by (22)—(30).
Thus, the method is also applicable to lossy structures as
long as the mode fields can be expressed in the form de-
scribed by (1) and (2).

2) Based upon the discussion in Section 1I, we propose the
following definition of the incident and reflected waves:

Ui(w) + Zi(w)l;(w)

a;(w) = NZO) (22)
bi(w) = Ujw) — Zi(w)l;(w) 23)

2\/ Z7(w)

with Z,(w) = Z;.(w) being the mode impedance equal to
the ratio of the mode voltage and current in the reflection-
less case (9). Let us note that following (19)—<21), at the
frequency wr, the mode impedance of the ith mode is

Zi(w) = e®. (24)

Equations (22) and (23) impose
Ui(w) = (ai(w) + bi(w)) v/ Zi(w) (25)
L(w) = 2() —bilw) 26)

Zi(w)

Unlike Kurokawa sdefinitions, those presented above are
consistent with Maxwell’ s equations. For example, they en-
sure zero reflection coefficient in an infinitely long wave-
guide, aso below the cutoff frequency of the considered
mode.

3) The S-matrix isextracted by an extension of the differential
method originally reported in [13]. From the port reference
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plane fields, we calculate the values of

Ui(w) = F{U;(t)}

Li(w) =F{I;(t)} (27)
R
I(w) :F{%} (28)

for each ¢th mode, where F' denotes the Fourier transform.
Using the quantities specified in (27) and (28) and fol-
lowing the rules of the differential method [13], we can ex-

tract
U
2D =\ o))

and then the values of a;(w) and b;(w) with the relations
(22) and (23). The quantities of (27) and (28) aso produce
the propagation constant at the ith port as follows:

(29)

75(w) = i) + jBi(w) = | VW) o

Equations (27)—(30) alow wide-band extraction of the
S-matrix with compensation for imperfect matching of the
loads. Frequency dependence of the reference (modal) im-
pedancesis automatically taken into account. Moreover, the
information of (30) can also be used for a virtual shift of
the port reference planes at the post-processing stage. The
knowledge of the propagation constant allows us to extract
the derivatives of (28) more accurately than by standard fi-
nite differencing. For the case of propagating modes (imag-
inary propagation constant), the relevant formula can be
found in [13]. For the case of evanescent modes (real prop-
agation constant), the formula (e.g., voltage derivative) be-

comes
Az Az
am@@_w<”3‘QJAG‘?“> alz
dz Az sinh(aAz)’
(1)

At firgt, the derivatives of (28) are calculated by standard
finite differencing of the FD-TD fields and are used to ex-
tract the propagation constant from (30). We then apply (31)
to recalculate the derivatives with enhanced accuracy. Such
an approach is formally iterative, but practically converges
after one iteration.

V. PROPERTIES OF THE OBTAINED S-MATRICES

Our system described by 3) in Section Il uses a “natural”
definition of the S-matrix with the reference impedance Z;(w)
equal to the ratio of the mode voltage and current in a reflec-
tionless case (9). Thisallows an easy shift of the reference plane
by Al through a simple multiplication of the waves a;(w) and
b;(w) by factors e*2! with the value of v extracted by (30).
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Yet we must note that this choice of the S-matrix definition
imposes complex or even purely imaginary values of the ref-
erence impedance Z;(w) in some practical cases. Segments of
a microwave circuit described by so-defined S-matrices can
be subject to cascading /de-cascading (or embedding/deembed-
ding) operations basically the same way, regardless of the refer-
ence impedance being real, imaginary, or complex. However,
with nonreal reference impedances, the S-matrices have dif-
ferent properties than with the real ones. Most interesting of
these properties will be investigated here.

A. Real Power Transmitted to a Guide Port

Let us calculate the real power transmitted to a waveguide
port with theinput reflection coefficient I; = b;/a,. Using (25)
and (26), we obtain

P = Re(U;IF) = Re([ai[2(1—[n[2+j21m(n))eﬂ'@). (32)

For apropagating modein alossless structure, the impedance
Z; is real, which imposes ¢ = 0 and a well-known result as
follows:
P=la (1- L) (33)
For an evanescent mode, the impedance Z; is imaginary,
which imposes ¢ = +r7/2 and
P, = :|:[a7;[2(2 IIn(D)). 3%
The above result seems unintuitive, but a closer look reveals
its physical sense. With an infinite guide, the reflection coeffi-
cient is equal zero and there is no real power flow. Also, reac-
tive impedance termination does not cause any real power flow
because the corresponding I is real. However, a resistive ter-
mination of an evanescent mode causes power dissipation in the
load and, thus, also areal power transmission through the guide.
Such power transmission is predicted by (34) because theresis-
tive termination imposes a nonzero imaginary part of I;.

B. Reciprocity Relations

Let us consider two different solutions of Maxwell equations
marked with ¢ and ®, which produce the known reciprocity re-
lation

//(Ea x H* — E® x H*)ds = 0. (35)

We will apply (35) to the case of a multiport with just two
portsi and j involvedintheintegration of (35) and all other ports
perfectly matched inside the surface of integration. Applying the
relations (19) and (20), we obtain

Usn+ UL —UNIE — UI? = 0. (36)

Now we replace the values of U and I by the incident and
reflected waves following (12) and (13). We assume that, in the
case ?, the jth port is perfectly matched, whilein the case?, the
ith port is perfectly matched. This assumption imposes a = 0
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and ¥ = 0 and transformation of the formulas leads to the
relation
W Ziet F?(Z0e be
e fF2(ZJ< o _ = (37)
aj irel ( zref) @;
Equation (37) justifies the choice of F(Z.), as in (16),
which produces a fully symmetrical S-matrix with S;; = S5;
for any reference impedances at ports.

C. Power Balance Relationsin a Lossless Multiport

Thefollowing relation iswell known in the case of alossless
multiport with real reference impedances:

n
D sl =1,
=1

Let us examine how this relation will be transformed if we
allow imaginary reference impedance at some of the ports. We
need to distinguish two cases concerning the input (:th) port. In
the first case, we assumethat Z; isrea and we obtain the result
similar to (38), but eliminating from the summation al those
S,; to outputs 7, where Z; isimaginary. In the second case, we
assume imaginary Z; at the input and obtain

F2Im(S;;) = Z 1517
J

(38)

(39)

with the summation extended exclusively over those outputs
where Z; is red and the & sign is the reverse of the sign in
the 45 phase angle of Z;.

D. Secial Case of a Reciprocal Lossless Two-Port

In the classical approach with real reference impedances, the
reciprocity relation combined with power balance additionally
produces the following well-known conditions:

|S11] = |522]
AI‘g(Sll) + AI‘g(SQQ) -2 AI‘g(Sgl) = +.

(40)
(41)

The relations (40) and (41) are practically important in elec-
tromagnetic simulations because they allow extracting a full
S-matrix of alossless two-port after just one excitation from
one of the ports. Let us now try to derive analogous relationsin
the case when 75 isreal, but Z, isimaginary.

Power balance relations (38) and (39) and reciprocity (37)
immediately give

1S11] =1
:F2 IIH(SQQ) = [521[2 = [512[2.

(42)
(43)

To find a condition replacing (41), let us consider input re-
flection coefficient I with the input placed at port 2 when the
output (port 1) is terminated with a reflection coefficient I75.
Simple operations on the S-matrix elements give

512521

F2=522+m.

(44)
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According to (34), the total reflection at port 1 (|11} = 1)
should produce purely rea I5. Thus, we can write

_512521

Im(Ss2) = Im 1 (45
S <F1S11 B 1)
Taking into account that
|S11] =1
1 =1

2IIH(522) = [521512[
Re <ﬁ) = —0.5 for arbitrary «

and also that (45) needs to be obeyed for I of the arbitrary
phase angle, we obtain the phase condition
Arg(S11) - Arg(S1) - Arg(S12) =5 (46)

with the sign + equal to thesignin the +; phase angle of Z.

Conditions (42), (43), and (46) provide interesting practical
information. We can extract the entire S-matrix of a lossless
reciprocal two-port based on S3; and S;»> obtained from just
one simulation with excitation at port 2 (of imaginary Z,) and
matched or quasi-matched conditions at port 1 (of rea 7).
However, we cannot extract the entire S-matrix in one simu-
lation with excitation at port 1. In such a case, it does not seem
possible to reproduce the real part of Sss.

V. SOFTWARE IMPLEMENTATION AND EXAMPLES OF ANALYSIS

The method described in this paper has been implemented by
the authors in the FD-TD QuickWave-3D v.2.1 simulator [14].
Operationson S-matrices describing circuit ssgments have been
performed with the S-matrix converting module [15].

Example1: Letusconsider asegment of arectangular wave-
guide with 10 mmx 5 mm cross section, short circuited at the
end. We assume that the waveguide is filled with a medium
having the permittivity and permeability of vacuum, but with
the conductivity of o = 0.15[1/(£2m)]. Reflection coefficient
has been extracted at a reference plane located at a distance of
15 mm from the short with a uniform FD-TD mesh of 0.5 mm.
The template of the dominant mode at 22.5 GHz has been used
over the entire frequency range. The simulation results are pre-
sented in Fig. 1 in the form of continuous lines—the black line
denoting the magnitude and the grey line denotes the phase. It
can be seen that, above the cutoff frequency (15 GHz), we have
the propagating wave region with fast phase changes and slow
magnitude changes, while below 15 GHz, we have the evanes-
cent wave region with slow changes of the phase. At the same
time, the magnitude decreases quickly to very low values (ap-
proximately —60 dB for 10 GHz).

At the post-processing stage, the reference plane has been
virtually shifted to the position of the short termination, using
the complex propagation constant extracted by the differential
method (30). The results are presented in Fig. 1 as dotted hor-
izontal lines (the black line at 0 dB for the magnitude and the



GWAREK AND CELUCH-MARCY SIAK: WIDE-BAND S-PARAMETER EXTRACTION FROM FD-TD SIMULATIONS

180

120

-120

-180
10 15 20 25 30

Frequency [GHz]

Fig. 1. Magnitude (black lines) and phase (grey lines) of the reflection
coefficient versus frequency in a short-circuited lossy waveguide section
extracted directly from FD-TD simulations at 15 mm from the back wall
(continuous lines) and calculated with a virtual shift of the reference plane to
the back wall (dotted horizontal lines at O dB for magnitude and —180° for
phase).

reference planes
e
1 I —
S L
10668 (5.6 05

teflon bar
25 4 8 2

Fig. 2. Shape of the considered two-resonator waveguide H -plane filter with
a Teflon bar in the center. All dimensions are in millimeters.

|2
A s
-

grey line at —180° for the phase). We can add that the antici-
pated values of |S11] = 0dB and < S7; = +180° have been
obtained in the entire frequency band with an impressive accu-
racy. The maximum magnitude error isapproximately 0.001 dB,
while the maximum phase error is approximately 0.03°.

Example 2: We now consider atwo-resonator H -planefilter
in rectangular waveguide technology, as presentedin Fig. 2. The
structure is air filled, except for a Teflon bar in the coupling
area between the resonators. Moving the bar closer to the wave-
guide center increases the coupling between the resonators and,
thus, deepens aripple in the center of the filter characteristics
of Fig. 3. The side position of the bar produces amaximally flat
filter characterigtic.

We compare the results extracted directly from the FD-TD
analysis of the entire structure (between reference planes 1 and
3in Fig. 2) and combined by cascading the S-matrices of the
two halves of the structure (between planes 1 and 2 and planes 2
and 3). Please note that, by virtue of symmetry, in the latter case,
only one-half of the structure needs to be simulated by FD-TD.
The results are presented in Fig. 3. The differences between the
two approaches are displayed on the separate amplified scale
because they are extremely small (an order of 0.002).

It is also very interesting to look at the S-parameters
of one-half of the circuit (planes 1 and 2), presented in
Figs. 4 and 5. In Fig. 4, we can see that | Sy;| = 1, as expected
from (42). Absolute values of the remaining three S-parameters
show resonant character and, in a certain frequency range,
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1 L~ 0.005
—1511] dirBco
Is 1 is |
" 06 L |s21| dif "
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dir&co g4 2 1511] dif dif
N % IS21| dirgco
0.2 7 Yoo
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op=="" ~ 0005
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Frequency [GHz]

Fig. 3. S-parameters obtained from the FD-TD analysis of thefilter of Fig. 2
calculated directly (dir), combined from the parameters of two halves presented
in Fig. 2 (co), and the difference between the above results shown in expanded
scale.

2
16|
[ . [S11]
12 ;
Bmnl F=m e ns o K ---------
1s121&[$21|
e L
04
IS221
0
19 20 21 22
Frequency [GHzZ]

Fig.4. Magnitudesof S-parametersof one-half of thefilter of Fig. 2 calculated
with apropagating mode at theinput (reference plane 1) and an evanescent mode
at the output (reference plane 2).

exceed unity. Although surprising at first sight, thisis consistent
with the properties of the generalized S-matrices discussed in
Section 1V. Confirming the reciprocity relations of Section IV,
we aso find that S = S2; in both magnitude and phase.
Moreover, it can be shown that both conditions (43) and (46)
are obeyed with high accuracy. In this example, we have phase
angle of the reference impedance at port 2 equa to +n/2,
which (according to (43)) produces a purely negative imaginary
part of Ss5 or, in other words, the phase of S,» between 0 and
—7. However, the most important proof of physical consistency
of the results presented in Fig. 4 and Fig. 5 is the fact that
their cascading produces the correct full filter characteristics of
Fig. 3.

Example 3: We consider another waveguide H-plane filter
with the long section presented in Fig. 6. The waveguide is
5-mmwide and, at thefilter input and output, we have aceramic
insert of relative permittivity 9.7, 1-mm wide. Inside the guide,
we have two dielectric resonators of relative permittivity 7, di-
mensions 2 mm x 1 mm. The ceramic inserts and resonators
span the full height of the guide. This structure will be used to
test S-parameter extraction in a very wide band—from 10 to
50 GHz.

The structure of Fig. 6 can be considered as a combination
of six step junctions between air-filled waveguide and partially
dielectric-filled waveguide (four with permittivity equal seven
and two with permittivity equal 9.7). Thus, we have calculated
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Fig. 5. Phase angles of S-parameters of one-half of the filter of Fig. 2
calculated with a propagating mode at the input (reference plane 1) and an
evanescent mode at the output (reference plane 2).
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Fig. 6. Long section of the waveguide filter considered in Example 3, with
dimensions in millimeters.
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Fig. 7. Magnitudes of S-parameters |Si(|&|S2:| of the structure of
Fig. 6 calculated directly and by matrix operations on the six individual
discontinuities. Curves in both cases practically coincide.

the structure responsefirst directly from FD-TD simulation, and
then by matrix operations on S-matrices of the six discontinu-
ities. In the latter case, only two FD-TD simulations of small
nonresonant discontinuities have been necessary, making the
analysis much faster than in the case of the entire resonant struc-
ture. All modal templates have been calculated at 25 GHz.

Fig. 7 presents the curves obtained directly and by cascading
of the six discontinuities. Results for both cases are practically
the same. It can be added (which is not shown in Fig. 7) that, in
each case, therelations | S11| = S22| and |S21] = |S12| aredso
obeyed with very high accuracy.

However, it should be admitted that such agood result is par-
tially due to asymmetrical character of the structure helping to
compensate errors of calculation. Let us look at Fig. 8, which
shows the results of extraction of |S;2| and |S2:] from asingle
input discontinuity of the structure of Fig. 6 (a step between an

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 8, AUGUST 2003

08

06
[Smnl
04

20 30 40 50
Frequency [GHz]

Fig. 8. Magnitudes of S-parameters|.S21| (curves 1 and 3) and |:S12| (curves
2 and 4) for asingle-input discontinuity of the structure of Fig. 6, with the mode
templates calculated at 25 GHz (curves 1 and 2) and with the mode templates
calculated at 42 GHz (curves 3 and 4).

air-filled guide and a guide with aceramic insert). Theseresults
are apart of those used for calculation of the result of Fig. 7 as
a combination of the six discontinuities. A single discontinuity
is highly asymmetrical and, thus, the calculation errors appear
mostly as a difference between |S12| and | S |. From Fig. 8, it
can be seen that, with the mode templates calculated at 25 GHz,
the curves of |S12| and |S2;| diverge above 35 GHz, indicating
avisible error of analysis for the upper part of the band. This
error can be eliminated by using a mode template calculated at
42 GHz (curves 3 and 4). However, in such acase, theanalysisat
lower frequencies is somewhat less accurate. A simple remedy
to such an error is enforcing the reciprocity by admitting that
both |S12| and |S2; | are equa to the average between them. It
can be verified that, in the case of Fig. 8, the results obtained
this way with each of the templates are practically the same all
over the frequency band.

Example 3 concerns a situation of an extremely wide fre-
guency band and very big differences in the dispersion proper-
ties of the input and output guides. Under such circumstances,
we may have doubts if using just one template for each port
will give sufficient accuracy in the entire frequency band. Such
doubts can be relatively easily clarified. We can calculate two
templates for each port, one of them close to the upper limit
and the other one close to the lower limit of the considered fre-
guency band. During the 3-D FD-TD simulation, we can cal-
culate two sets of the S-parameters with the two sets of tem-
plates. Projecting such obtained .S-parameter curveson the same
scale immediately reveds if (and by how much) they diverge
due to the template change. We can thus verify which parts of
the curves of S-parameters versus frequency are fully reliable.
Such an approach has been implemented in our software and
has been proven practical. Its application typically increasesthe
total computing time and memory not more than by a few per-
cent.

Example 4: We consider a spiral inductor with an air bridge
first presented in [16] and then used as a benchmark by other
authors. We assume all dimensions of the structure as in [16].
Fig. 9 shows the comparison of three curves
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Fig. 9. Magnitude of S5, of the spiral inductor considered originaly in
[16]. Continuous curves (with a negligible differences between them) show
the results of simulation by our method assuming a mode template calculated
at one frequency—2 GHz (black line) and 18 GHz (grey line). Dotted line
presents the results of measurements after [16].

* our calculations with atemplate at 2 GHz (black line);
« our calculations with atemplate at 18 GHz (grey line);
» measurements after [16] (black dotted line).

The agreement between the simulations and measurements
is very good. The only visible difference is that the measured
magnitude of S»; is at lower frequencies approximately 0.2 dB
lower than the simulated one. Since asimilar shift of magnitude
was obtained in simulations performed by the authors of [16],
it is quite reasonable to assume that it is due to the measure-
ment’ s setup calibration error or somesmall seriesresistancein-
troduced by the applied technology of circuit fabrication. Let us
note that the differences between the two curves obtained with
the two templates are negligible, which indicates that, in this
case, the S-parameters can be extracted accurately wide band
with a single template.

V1. CONCLUSIONS

The proposed method of S-parameter extraction provesto be
very versatile, accurate, and effective in practical applications.
A combination of those properties permits to compare it favor-
ably versus the previously reported methods. The following is
worth noting.

* It has proven applicable to frequency bands above and
below cutoff frequencies of transmission lines.

* In the examples, we have considered only one mode at
each port, but the mode-filtering properties described by
(19) and (20) make the method fully applicable to amul-
timode environment. This has been verified in the smula-
tion practice.

« |n al the presented examples, it has been possible to ex-
tract accurate wide-band results with mode templates cal-
culated at a single frequency. This is due to wide-band
properties of the differential method, which extracts and
automatically takes into account the frequency-dependent
behavior of the modal impedance and propagation con-
Stant.

1927

e The method cannot fully compensate for the errors
due to the frequency-dependent changes of the trans-
verse-field distributions er;(z,y,w) and hr;(z,y,w)
in inhomogeneous guides. Such errors are usually quite
small. However, in the case of wide-band simulation
of inhomogeneous guides, it is advisable to verify their
level by comparing the S-parameters obtained with mode
templates calculated at two or three different frequencies.
Such a procedure has been implemented by the authors
and proven relatively inexpensive in terms of computer
time and memory.

» The method is applicableto lossy structures aslong asthe
fields can be expressed in the form of (1) and (2). These
assumptions are not rigorously met in the case of inhomo-
geneous|ossy transmission lines. However, the authors ex-
perience shows that the method can be applied with good
accuracy to practical 1ow-loss inhomogeneous lines with
e;(z,y) and h,(x, y) generated for a corresponding loss-
less line.

« Applicability of the proposed method to cases where the
assumptions given by (1) and (2) cannot be made (as, e.g.,
complex modes) should be a subject of a separate study.
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